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On the parametric rolling of ships in
a following sea under simultaneous

nonlinear periodic surging

By K. J. Spyrou

Department of Naval Architecture and Marine Engineering,
National Technical University of Athens, 9 Iroon Polytechniou,

Zographou, Athens 157 73, Greece

A new approach to the study of the parametric rolling of ships in a following sea
is presented. The new aspect is the consideration of the interference of surge with
the roll dynamics. When the waves are long and steep, the oscillatory component
of the surge velocity can become large when compared with the mean value. As
the oscillatory surge grows in amplitude, it tends also to become asymmetric due
to the existence of nonlinearity. The nature of asymmetric surging is such that a
ship spends more time on the crests than on the troughs of the waves. This means,
however, that the probability of capsize is increased because a ship’s roll-restoring
capability around the crest is at a minimum. We propose a new second-order dif-
ferential equation of roll which incorporates automatically the surge e¬ect through
appropriate position-dependent coe¯ cients. We explore numerically how this asym-
metry in surge in®uences the build up of parametric rolling. The layout of the stability
transition lines of the coupled system was found to be notably di¬erent from that of
a Mathieu-type system. We pay attention also to the vicinity of surf-riding, where
the capsize is more of a `pure-loss’ type.

Keywords: ship; capsize; parametric rolling; roll; surge; nonlinear dynamics

1. Introduction

It is well known that in a following seaway a ship may become unstable due to an
intensively ®uctuating roll `righting arm’, primarily the result of a variation of the
submerged part of the hull between the crests and the troughs of the waves (Grim
1952). Commonly, mathematical models with a time-dependent restoring term, in
many cases as simple as a Mathieu equation with damping, are employed for investi-
gating the dynamic behaviour of a ship subjected to such an `internal forcing’ e¬ect
from the waves (Kerwin 1955). In more recent years, the nonlinear terms in restoring
and in damping are included in these models so that roll behaviour far from equi-
librium, and especially the occurrence of capsize, can be investigated (Blocki 1980;
Sanchez & Nayfeh 1990; Kan 1992). A detailed list of references with various earlier
approaches (covering deterministic or stochastic excitation, single-degree or coupled
models, etc.) is provided in Spyrou (2000).

Since a numerical treatment of the roll equation is not constrained in any sense by
the consideration of steep waves, large amplitudes of the ®uctuating (`parametric’)
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1814 K. J. Spyrou

terms are easily taken into account. However, the use of a mathematical model with a
time-dependent restoring should not be overemphasized because it is, in fact, devoid
of a true physical meaning (restoring is, of course, position dependent).

Consider a ship moving in the same direction with a steep sinusoidal wave: the
roll-righting arm will be some periodic function of k¹ ¡ !t. The conventional nota-
tion is applied here with k being the wavenumber, ¹ the distance in the direction
of wave propagation of the ship’s origin from a ­ xed datum, ! the wave frequency
and t time. Since ¹ = ct + x and ! = kc, we may write k¹ ¡ !t = kx, where
x is the position of the ship’s origin with respect to a `wave’ system, ­ xed on a
trough and thus moving with the wave celerity c. In a following sea, the frequency
of encounter is !e = k(c ¡ u), where u is the speed. If we multiply both sides by t,
we obtain !et = k(ct ¡ ut). For constant u, the relative position can be expressed
as x = (u ¡ c)t, which leads further to the relation !et = ¡ kx. The representa-
tions of variable restoring based on kx and !et are therefore interchangeable (or, in
other words, the Mathieu-type model is valid) when the speed is nearly constant,
but not in other cases. Equivalence entails the periodic surging due to the waves to
be small, a requirement practically satis­ ed when the waves are not steep. Natu-
rally, the question arises as to how a signi­ cant periodic surging could in®uence the
onset of instability and, more importantly, whether capsize would be rendered more
likely.

The assumption of constant forward speed `contains’ a rather fundamental incon-
sistency: in the long and steep waves where signi­ cant roll-righting-arm reductions
occur, the ®uctuating part of surge velocity is likely to build up to become a large
percentage of the ship’s still-water speed. De­ nitive experimental evidence about this
was published by Kan (1990). Another important feature which becomes increasingly
relevant as the surge motion grows in amplitude is that, in a sinusoidal wave, the wave
surge force will also be a sinusoidal (and thus nonlinear) function of ship position.
The nature of this e¬ect is such that a ship will be spending more time around the
crests than around the troughs. Experiments based on free-running models in waves
have con­ rmed this behaviour (see, for example, Grochowalski 1989; Kan 1990). The
net e¬ect of surge nonlinearity is therefore that a ship stays longer in the area of
the wave where it is most vulnerable. If, for example, roll restoring around the crest
is negative, more time for divergence from the upright state will be available and
capsize should become more likely.

Although the asymmetric surging and the Mathieu-type instability of roll, both
phenomena of the following sea, have been repeatedly examined in the past, they are
always considered independently and for this reason their combined e¬ect remains
unknown. A very interesting aspect, for example, is how this interference of surge
with roll will a¬ect the stability transition curves of the trivial `upright’ state in
comparison with a conventional Mathieu-type system; and ultimately, what will be
the e¬ect, in quantitative terms, on a ship’s propensity towards capsize. Answers to
these questions will be sought in the present paper. Moreover, we shall explore the
possibility of developing a new second-order di¬erential equation of roll which auto-
matically takes into account the coupling e¬ect with surge. This may have limited
immediate use at this stage, given the easier option of a direct integration of the
motion equations. However, this new roll equation might inspire some further ana-
lytical work, which could lead to a closed-form design formula for capsize in following
seas.
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Figure 1. A simple mechanical analogue based on coupled penduli.

We should note that our results are likely to be of interest to a wider audience.
At a fundamental level, the problem which we are trying to solve is based on the
behaviour of a pendulum forced parametrically through coupling with another pen-
dulum performing full rotations under the action of some constant external torque
(­ gure 1).

2. Nature of surge nonlinearity and character of the response

Consider the balance of forces along the longitudinal axis of a ship travelling in long
following waves: in order to sustain the forward motion, the thrust generated by the
propeller should counteract the inertial and drag force, plus an alternating position-
dependent wave force. The latter tends to push the ship forward when the middle of
the ship lies on the downslope, while the forward motion is resisted when the ship
lies on the upslope. We assume also that the total resistance of the ship may be split
into two parts: a time-independent still-water resistance component and a periodic
component due to the existence of the waves, which are assumed to be at least as
long as the ship. Considering a simple sinusoidal wave, the application of Newton’s
second law for surge leads to the following equation of motion:

(m ¡ X _u) _u + [R(u) ¡ T (u; n)] + f sin(kx) = 0; (2.1)

where m, ¡ X _u are, respectively, the ship’s mass and the added mass of surge, R
is the resistance force in still water, T is the propeller thrust (assumed una¬ected
by the wave) and f is the amplitude of the surge wave force. The dot indicates
di¬erentiation with respect to the real time t. Although later we shall consider also
the roll angle ’, the assumption is made that the e¬ect of roll on the various force
components of (2.1) is negligible.
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Resistance will be some function of velocity u and may be approximated by a
polynomial without constant term like the following:

R(u) = r1u + r2u2 + r3u3; (2.2)

where ri, i = 1; 2; 3, are appropriate coe¯ cients. Likewise, and in accordance with
standard practice, the propeller thrust is expressed in terms of the thrust coe¯ cient,
KT,

T (u; n) = (1 ¡ t p )» n2D4
p KT(u; n); (2.3)

where t p is the thrust-deduction coe¯ cient, » is water density, n is propeller rate
and D p is the propeller diameter. The thrust coe¯ cient KT is written further as a
second-order polynomial of the speed of advance J (u; n),

KT(u; n) = µ0 + µ1J (u; n) + µ2J2(u; n); (2.4)

with

J(u; n) =
u(1 ¡ w p )

nD p

; (2.5)

where µi, i = 0; 1; 2, are appropriate coe¯ cients and w p is the wake fraction. Sub-
stitutions of (2.5) into (2.4) and then of (2.4) into (2.3) yield

T (u; n) = ½ 2u2 + ½ 1un + ½ 0n2; (2.6)

where

½ 2 = µ2(1 ¡ t p )(1 ¡ w p )2 » D2
p ; ½ 1 = µ1(1 ¡ t p )(1 ¡ w p ) » D3

p ; ½ 0 = µ0(1 ¡ t p ) » D4
p :

Instead of measuring the surge velocity with respect to an observer ­ xed on Earth,
it is more convenient to measure it relative to the wave celerity. The relative velocity
_x will be expressed then as _x = u ¡ c. By substituting (2.2) and (2.6) into (2.1),
and then expressing everything in terms of _x, rather than in terms of u, we obtain,
­ nally, the following second-order di¬erential equation for x:

(m ¡ X _u) �x + f[3r3c2 + 2(r2 ¡ ½ 0)c + r1] ¡ ½ 1ng _x

+ [3r3c + (r2 ¡ ½ 0)] _x2 + r3 _x3 + f sin(kx)

= ( ½ 0c2 + ½ 1cn + ½ 2n2)

T (c;n)

¡ (r1c + r2c2 + r3c3)

R(c)

: (2.7)

The above is basically the equation of a pendulum with nonlinear damping, forced by
a constant external torque. If the amplitude of the wave force in the surge direction
is small, then the sti¬ness term of (2.7) becomes almost unimportant. Combined
with the fact that damping’s nonlinearity is not strong, behaviour will be basically
linear. Even when zero-encounter frequency is approached, nothing extraordinary
would arise (the hydromechanics will change if the Froude number becomes very high
and the ship enters a pre-planing or planing mode where it experiences an upward
dynamic lift; but we shall not be concerned with this side of the problem in the
present analysis). If the waves become steeper, however, the nonlinear nature of the
pendulum-like surge equation (2.7) will start playing an increasingly dominant role.
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Figure 2. Arrangement of the asymmetric periodic surge and the two coexisting stationary
solutions. (a) On the phase plane [cos(kx); _x]. (b) Qualitative representation of the °̀ ow’ on the
plane [x; _x].

A very notable characteristic of the response in that wave regime is that higher-order
harmonics will appear and the response tends to become increasingly asymmetric.
Moreover, a pair of ­ xed points representing the condition, known in the literature
as surf-riding, starts to coexist with the periodic motion. On the basis of the analogy
with the pendulum, such a development may be understood fairly easily. Depending
on the initial state and the magnitude of the constant external torque, a pendulum
would either perform full rotations or it would stay at an asymmetric equilibrium
position. In fact, such equilibria come into existence in pairs and they are located
symmetrically around the horizontal line passing from the centre of the pendulum
(or around the node of the wave’s upslope, considering the ship dynamics). However,
only the lower equilibrium (corresponding to a location nearer to the trough) is
stable. The inset of the unstable point (located nearer to the crest) separates the
basin of the stable periodic state from that of the stationary state.

The underlying cause of the asymmetry in the periodic surging motion is, as is
usual in nonlinear oscillations, an interaction phenomenon. This is depicted nicely
on the basis of the phase-plane [cos(kx); u] (­ gure 2).y As the steady periodic orbit
approaches the saddle point near the crest, the character of the periodic response is
increasingly determined by the distance from the manifolds of this saddle.

The critical combination of external forces which would create surf-riding equilibria
can be derived on the basis of equation (2.7). If ¡ 1 (T (c; n) ¡ R(c))=f 1, then
¡ 1 sin kx 1, and therefore two families of equilibria become possible, located at

x =
2̧ º

k
+

1

k
arcsin

T (c; n) ¡ R(c)

f
;

y A cyclic function of ship position is used so that the steady-state orbit is contained in the range
[0; 1]. This should not obscure the fact, however, that the character of the motion is likely to be non-
cyclic. The undamped version of (2.7) receives an elliptic solution. The modulus of this solution will vary
as the saddle inset is approached (by increasing the wave steepness or the propeller rate).

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1818 K. J. Spyrou

x =
(2 ¸ + 1)º

k
¡ 1

k
arcsin

T (c; n) ¡ R(c)

f
;

where ¸ is any integer.
A similar sequence of phenomena would have been realized if the propeller rate,

rather than the wave steepness, had been selected as the control parameter (but the
wave steepness should be kept ­ xed at some relatively high value). With respect
to (2.7), this means stepping up the torque while lowering the linear damping. No
matter which is the control parameter, the oscillatory-type response is destined to
disappear altogether at a homoclinic saddle connection event. This is a well-known
phenomenon of global bifurcation resulting from a collision of a limit cycle with a
saddle point in state space (Spyrou 1996). A remarkable and important-for-safety
characteristic of this event is that it occurs at a nominal speed which is much lower
than the wave celerity.y

With a very considerable increase of speed, the ship should eventually move out of
the surf-riding regime and return to periodic-type motions, this time overtaking the
waves. For ordinary displacement-type ships, however, such a scenario very rarely
represents a practical option.

3. A new equation of coupled roll

We consider the di¬erential equation of roll motion in an exactly following sea,

(I ¡ K �’) �’ + D( _’) + C(’; x) = 0: (3.1)

In (3.1), ’ is the roll angle, I is the roll moment of inertia and ¡ K �’ is the `added’
moment, D( _’) is the roll damping function and C(’; x) is the position-dependent
roll restoring. We have assumed that the roll damping is not in®uenced signi­ cantly
by the wave, in which case D( _’) may be expressed in the customary manner on the
basis of a linear plus a cubic (or a linear plus an absolute quadratic) roll velocity
term. A realistic generic expression for restoring is not easy to determine due to
the combination of a strong nonlinearity with position dependence. The simplest
and most common approach is to consider the time dependence only in the linear
restoring term which, however, has no physical basis.

By dividing (3.1) with the moment of inertia and then normalizing the roll angle
’ on the basis of the angle of `vanishing stability’ ’v, equation (3.1) will become

�z + b1 _z + b3 _z3 + g(z; x) = 0; (3.2)

where a damping function with linear and cubic term was adopted, with respec-
tive coe¯ cients b1 and b3. The position-dependent restoring function g(z; x) is not
determined explicitly at this stage.

Given an initial ship state, the time evolution of z for a speci­ c combination of
propeller rate and wave characteristics may be found by solving the equation of
surge (2.7) simultaneously with the equation of roll (3.2). The phase-space dimen-
sion changes, however, from three (z; _z; t) to ­ ve, due to the extra pair (x; _x). The

y For a purse-seiner vessel whose behaviour was investigated in waves with ¶ =L = 2:0, H=¶ = 1
20 , the

homoclinic connection occurred at Fr = 0:402. This is ca. 71% of the celerity value (0.564). It is notable
also that due to the fact that surf-riding equilibria exist for Fr > 0:324, the transition to surf-riding can
take place at a nominal Froude number which is only 57% of the celerity value.
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Parametric rolling of ships in a following sea 1819

direct method for studying the behaviour of such a system is by solving the coupled
equations of motion numerically (see x 4 below). We might also think of identifying an
approximate solution x(t) (essentially the rotational motion of the pendulum) from
the surge equation on the basis of some perturbation method and then introduce this
solution into the roll equation. The problem with this approach, however, is that in
the parameter region of our interest the solution is strongly elliptic. Moreover, the
value of damping in the surge mode is very high. Thus the hope for success is limited.

Due to the speci­ c form of the surge equation, a third option is also available.
It will be shown that it is possible to produce a new roll equation, without using a
perturbation-like approach, by combining equations (2.7) and (3.2). We are required,
however, to change the variable with respect to which the di¬erentiation is carried
out. Instead of using the time variable t, we shall express everything in terms of the
relative position x (di¬erentiation with respect to x will be indicated by a prime).
The following transformations are applied:

dz

dt
=

dz

dx

dx

dt
= z0 _x; (3.3)

d2z

dt2
= d

dz

dx

dx

dt
dt =

d2z

dx dt

dx

dt
+

dz

dx

d2x

dt2
: (3.4)

Substitution of dz=dt from (3.3) into (3.4) yields

d2z

dt2
=

d2z

dx2

dx

dt

2

+
dz

dx

d2x

dt2
= z00 _x2 + z0 �x: (3.5)

Let us introduce further equations (3.3) and (3.5) into (3.2):

_x2z00 + [�xz0 + b1 _xz 0 + b3( _xz0)3] + g(z; x) = 0: (3.6)

Consider once more equation (2.7) which, in principle, is not solvable analyti-
cally. Had damping been a quadratic function of _x, however, equation (2.7) would
essentially be a very special form of the equation of the pendulum for which exact
analytical expressions of its phase trajectories (given some initial conditions) can be
obtained in the form _x = F (x) (Stoker 1950). In order to exploit this possibility,
we must approximate the third-order damping polynomial by the single quadratic
® (c; n) _xj _xj, whose coe¯ cient ® must be identi­ ed. This approximation is legitimate
because the graphical forms of the two functions are quite alike.

Consider the damping component D( _x) of (2.7) and the approximate one, say
D1( _x), based on the single quadratic

D( _x) = f[3r3c2 + 2(r2 ¡ ½ 0)c + r1] ¡ ½ 1ng
A1

_x + [3r3c + (r2 ¡ ½ 0)]

A2

_x2 + r3

A3

_x3;

(3.7 a)

D1( _x) = ® _xj _xj: (3.7 b)

The coe¯ cient ® should be identi­ ed by minimizing the distance between D( _x) and
D1( _x).y More speci­ cally, we want to minimize S = D( _x) ¡ D1( _x) over a velocity
range determined by lower and upper bounds, respectively, _x1 and _x2.

y The calculation of an equivalent quadratic damping should be done, in principle, on the basis of
an energy argument, by requesting the energy loss in a `cycle’ to be the same between the two systems.
However, since an analytical expression of the solution cannot be obtained, such a method is not useful
in this particular context.
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A rather straightforward method is to consider a least-squares ­ t of D1( _x) on
D( _x). By considering l points in the range [ _x1; _x2], we identify the value of ® that
minimizes the quantity

S =

l

i= 1

A1 _xi + A2 _x2
i + A3 _x3

i ¡ ® _xij _xij
2

:

This value is given by

® = ¡ A1

l

i= 1

_x3
i +A2

l

i= 1

_x4
i +A3

l

i = 1

_x5
i

l

i= 1

_x4
i : (3.8)

It is obvious that ® depends on the range of _x. The determination of appropriate
lower and upper bounds for _x is discussed in the appendix.

By introducing the quadratic damping term into (2.7), the following `equivalent’
equation of surge is derived:

(m ¡ X _u) �x + ® (c; n) _xj _xj + f sin(kx) = T (c; n) ¡ R(c): (3.9)

On (3.9) are applied the following transformations:

y = kx; p =
®

k(m ¡ X _u)
; q =

fk

(m ¡ X _u)
;

r =
[T (c; n) ¡ R(c)]k

(m ¡ X _u)
; ½ =

p
qt; v =

dy

d ½
:

Then (3.7) can be recast as follows:

v
dv

dy
+ pvjvj + sin y =

r

q
: (3.10)

This may be written further as

d(v2)

dy
+ 2pvjvj = ¡ 2 sin y +

2r

q
; (3.11)

or

d(v2)

dy
+ 2pv2 = ¡ 2 sin y +

2r

q
when v 0; (3.12 a)

d(v2)

dy
¡ 2pv2 = ¡ 2 sin y +

2r

q
when v < 0: (3.12 b)

Equations (3.12) obtain the following exact solutions, respectively:

v = c1e¡2py +
2(cos y ¡ 2p sin y)

(1 + 4p2)
+

r

pq
when v 0; (3.13 a)

v = ¡ c2e2py +
2(cos y + 2p sin y)

(1 + 4p2)
¡ r

pq
when v < 0: (3.13 b)
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The coe¯ cients c1 and c2 should be determined on the basis of the initial conditions.
We shall go back now to the original variables and parameters and we shall express
the solution in terms of the relative position x and real time t:

dx

dt
= _x =

1

k
c1qe¡2pkx +

2q(cos kx ¡ 2p sin kx)

(1 + 4p2)
+

r

p
for _x 0; (3.14 a)

dx

dt
= _x = ¡ 1

k
c2qe2pkx +

2q(cos kx + 2p sin kx)

(1 + 4p2)
¡ r

p
for _x < 0: (3.14 b)

The second time derivative of x should be

�x = ¡ pk _xj _xj ¡ q

k
sin kx +

r

k
: (3.15)

Through substitution of (3.14) and (3.15) into (3.6), the explicit time dependence
is removed completely from the roll equation. Rewriting, for example, (3.2) with
linearized still-water restoring, characterized by a natural frequency !0, and a lin-
earized damping 2 · _z (so that direct comparisons with the customary Mathieu-type
roll model are possible), we obtain, after the substitutions into (3.6) have been carried
out,

1

k2
c1qe¡2pkx +

2q

(1 + 4p2)
(cos kx ¡ 2p sin kx) +

r

p
z00

+ ¡ p

k
c1qe¡2pkx +

2q

(1 + 4p2)
(cos kx ¡ 2p sin kx) +

r

p

+
2 ·

k2
c1qe¡2pkx +

2q

(1 + 4p2)
(cos kx ¡ 2p sin kx) +

r

p
¡ q

k
sin kx +

r

q
z 0

+ !2
0(1 ¡ h cos kx)z = 0; (3.16 a)

¡ 1

k2
c2qe2pkx +

2q

(1 + 4p2)
(cos kx + 2p sin kx) ¡ r

p
z00

+
p

k
c2qe2pkx +

2q

(1 + 4p2)
(cos kx + 2p sin kx) ¡ r

p

¡ 2 ·

k2
c2qe2pkx +

2q

(1 + 4p2)
(cos kx + 2p sin kx) ¡ r

p
¡ q

k
sin kx +

r

q
z 0

+ !2
0(1 ¡ h cos kx)z = 0; (3.16 b)

representing the cases _x 0 and _x < 0, respectively. In (3.16) we assumed sinusoidal
variation of restoring, with amplitude h.

If the waves run faster than the ship, the velocity _x will be lower than zero because
_x represents the di¬erence of the ship’s real surge velocity from the wave celerity.
There is only one exception to this which, however, is not of particular interest here.
During the transient leading to surf-riding, the velocity will exceed the celerity as
the orbit is near and almost parallel to the outset of the saddle of crest. For most
conventional ships, their maximum still-water speed is usually below the celerity of
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those waves whose length is likely to cause problems in the sense discussed. Therefore,
it is reasonable to concentrate on those cases where _x is negative since our intention
is to examine behaviour in steep and long waves well before the surf-riding range.

A further remark is that as the ship is trailing behind the waves, x ! ¡ 1 and
the exponential terms e§2px, representing, in fact, the transient part, will vanish. If
we could con­ ne our attention to the e¬ect of steady periodic surging on roll, the
following simpli­ ed form of the roll equation would be obtained:

¡ 1

k2

2q

(1 + 4p2)
(cos kx + 2p sin kx) ¡ r

p
z 00

+
p

k

2q

(1 + 4p2)
(cos kx + 2p sin kx) ¡ r

p

¡ 2 ·

k2

2q

(1 + 4p2)
(cos kx + 2p sin kx) ¡ r

p
¡ q

k
sin kx +

r

q
z0

+ !2
0(1 ¡ h cos kx)z = 0: (3.17)

Thus we have arrived at a new roll equation with the form A(x)z 00+B(x)z0+K(x)z =
0 containing the nonlinear surge e¬ects and having periodic coe¯ cients in all three
terms: inertia, damping and restoring.

4. Numerical investigation

(a) Selection of control parameter

When periodic surging is taken into account, the frequency of encounter (and sub-
sequently the frequency ratio) will become periodic too and should no longer be
treated as a control variable. At ­ rst instance, a mean encounter frequency might
seem appropriate to play this role. However, given that our interest lies mainly in
the regime of strongly non-cyclic surging motion, the identi­ cation of such a mean
is problematic. It is far easier to base the control parameter on the frequency of
encounter !e that would be realized if we operated at steady state and in calm sea.
Rather than using directly !e, however, we have preferred (as is common for paramet-
ric systems) the ratio a = !2

0=!2
e , with !0 representing the roll’s natural frequency. It

is easily shown that, for a certain wave, a is linked with the nominal Froude number
(a representative of steady motion in still water) through the following relationship:

Fr = Frc ¡ ¶

L

!0
0

2º
p

a
; (4.1)

where

Frc =
1p
2 º

¶

L

is the Froude number of the wave celerity and

!0
0 = !0 L=g

is the non-dimensionalized natural frequency, L is the ship length, ¶ is the wave
length and g is, this time, the acceleration due to gravity. Furthermore, by matching
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still-water resistance with thrust at the equilibrium condition, the following expres-
sion of the required propeller rate n is found:

n =
¡ d1 + d2

1 ¡ 4d2

2
; (4.2)

where

d1 =
b2

b3

Fr Lg; (4.3)

d2 =
(b1 ¡ a2)LgFr2 ¡ a3(Lg)3=2Fr3 ¡ a1

p
LgFr

b3

: (4.4)

(b) Calculation of the surge wave force

The behaviour of a ship on a wave with ¶ =L = 2:0 and variable steepness has been
considered in detail. In order to ensure that realistic levels of excitation are used, the
amplitude f of the surge force is calculated on the basis of a 34.5 m long purse-seiner
vessel which has been under extensive investigation recently (Umeda et al . 1995).
The amplitude f is determined according to the Froude{Krylov assumption, which
is believed to be satisfactory as far as the surge direction is concerned.

It is not di¯ cult to envisage that the stability boundaries will undergo transfor-
mations if there is going to be any substantial di¬erence between the coupled and
the uncoupled systems. In order to understand how the dynamics of the coupled
system emerge as the strength of coupling is raised, we treated the surge force as an
independent (control) parameter which is gradually increased towards realistic levels.
Then we carried out simulations using characteristic fractions of the wave force.

(c) Roll-restoring function

In the calculation of roll restoring a rather more liberal approach was adopted. As
the main objective is to ­ nd out how the stability chart of a Mathieu roll equation
is changed when coupling with surge is introduced, the following assumptions were
made.

(a) Restoring is taken to be a simple linear function of the roll angle.

(b) The variation of restoring as a function of the position x is sinusoidal.

(c) The wave steepness H=¶ is connected with the amplitude h of the restoring
variation according to the following linear law:

H=¶ = "h: (4.5)

Of course, such a law is somehow arti­ cial, but on the other hand it contains the
key principle of the e¬ect. The same approach can be applied without any problem
when an exact law is known.

We have assumed further that " = 1=20. This would mean that negative metacen-
tric height at the crest would appear if a 1/20 wave steepness was exceeded.y

y In a more practical context, of course, a detailed calculation based on the true hull shape should
be carried out in order to ­ nd out how roll restoring varies as a function of wave length ¶ and height H ,
ship position x and, possibly, speed u if the latter is high.
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(d) Roll damping

With the precedence of the use of a linear restoring, it was logical to adopt also a
linear function for damping. This does not mean, of course, that the roll dynamics
should be studied with a linear equation, but only that, at this stage, we are interested
in comparing the transition lines with those of a damped Mathieu equation which is
linear. The considered roll equation would therefore assume the following form:

�z + 2 · _z + !2
0 [1 ¡ h cos(kx)]z = 0: (4.6)

For the ­ rst few resonances, the value of damping will be particularly signi­ cant in
terms of the least required amplitude of forcing. A damping value of 2 · = 0:117 s¡1

extracted from free-roll decay experiments on a 2 m model of the considered ship has
been used as the reference value (Hamamoto et al . 1995). Simulations were carried
out also for arti­ cially lower damping values.

(e) Roll natural frequency

Taking into account (4.1), the vertices of the transition lines for the undamped
Mathieu equation are expected to be encountered at the following (nominal) Froude
numbers,

Fr = Frc ¡ !0
0( ¶ =L)

º ²
; (4.7)

where ² is the order of the resonance. Sometimes, however, a ship’s roll natural
frequency is so high that the principal resonance (at !e around 2!0) is not realizable
(in a following sea, the encounter frequency is bound to be low). Considering once
more the ship model, the natural frequency has been measured to be !0 = 0:84 s¡1

(Umeda et al . 1995). For such an !0, the required Fr at the principal resonance
is negative; something, of course, unrealistic. Therefore, only the higher resonances
could be encountered in practice.

Our investigation would not have been complete without considering a case where
both the principal and the fundamental resonances are present. One case where
this happens theoretically is when the natural frequency is half the original natural
frequency (!0 = 0:42 s¡1). The two resonances (always for undamped motion) should
then be encountered, respectively, at Fr = 0:062 and 0.313. We remark that the
Fr = 0:313 of the fundamental resonance is very near to the threshold Fr where
the stationary solutions of surf-riding become possible (Fr = 0:324), creating an
interesting possibility for interaction.

(f ) Initial conditions

(i) Position on the wave

When restoring is positive everywhere on the wave, we initially place the ship’s
centre at a wave crest. Otherwise, we select that point where negative restoring begins
at the downslope of the wave. This point lies at a distance ¶ (1 ¡ arccos(1=h)=2 º )
from the next trough. As the waves run faster, the ship will immediately enter into
the region of negative restoring.
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Figure 3. The transition lines for the Mathieu system (no surge coupling) for t = 200 s and
t = 50 s ¡ 1 (inner lines). The roll damping was · = 0:0585 s ¡ 1 and the natural frequency
!0 = 0:84.
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Figure 4. Transition lines for small wave forcing (amplitude 1
2 f).

The allowed time and the damping are as in ¯gure 3.
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Figure 5. As ¯gure 3, with 3
4 f .

(ii) Surge velocity

For the initial surge velocity u0, we have considered three di¬erent possibilities:

(i) u0 = ua, where ua is the nominal velocity at the considered value of a;

(ii) u0 = c; and

(iii) u0 = 0.

A high initial velocity, such as the wave celerity, would render surf-riding much more
likely in the region just higher than Fr = 0:324. However, in that region, we are
primarily interested in the asymmetric surging behaviour. The choice of a low speed
on the other hand, like u0 = 0, while rendering surf-riding less likely, would also
create a rather arti­ cial situation during the ­ rst few cycles when the velocity will
be in the process of building up. It seemed logical, therefore, to place more emphasis
on simulations started with the nominal speed. Even this may not be considered as
an ideal solution, because there is still some build up of average velocity in the region
of asymmetric surging. The best solution would be to identify the speed at the crest
beforehand (by solving the surge equation) and then set this as the initial velocity.
This, however, would complicate the simulation process, which was undesirable at
this stage.

(iii) Heel angle

The initial normalized heel angle is assumed, z0 = 0:01.
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Figure 6. Transition lines with full surge forcing.

(iv) Roll velocity

The initial roll velocity _z0 is zero.

(g) Capsize condition

When the normalized roll angle had reached the value of 1:0, it was considered that
a capsize case had been encountered. Put di¬erently, up to a 100-fold increase of the
initial heel has been allowed. Simulations were ­ rstly carried out for 200 s (or until
the roll angle had reached the `capsize’ limit z = 1, whichever of the two events
occurred ­ rst). We have investigated the e¬ect of the allowed time by considering
also the shorter time duration of 50 s. This is important because the nonlinearity of
surge works in such a way that capsize becomes quicker (the Mathieu-based results
underpredict the safety margin of the ship). Our interest is focused mainly on the
behaviour at low frequencies of encounter where capsize is more likely.

(h) Investigation results

The transition lines for the Mathieu-type roll equation are shown in ­ gure 3. The
result of the introduction of coupling may be seen in ­ gures 4{6 under progressive
stepping-up of the wave surge force. Figure 6, especially, shows the transition lines for
the full forcing. As said earlier, for the reference roll natural frequency, the principal
resonance could not be realized. On the basis of ­ gure 3, which refers to the uncoupled
equation, only four resonances are practically signi­ cant (the maximum a is 10; for
the considered !0 that corresponds to Fr = 0:405, which is just about the realistic
upper limit for displacement ships).

With the introduction of a small surge force, the resonances show a tendency to
shift towards higher frequencies while their domains become wider, especially at the
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Figure 7. Detail of the surf-riding boundary at 0:625f .

1.5

1

1.1

1.2

1.3

1.4

0.35

Frn

h

0.1 0.15 0.2 0.30.25
0.9

Figure 8. Alternative presentation of the information in ¯gure 6. We have considered on the
x-axis the nominal Froude number rather than the ratio of frequencies, since this is more common
among naval architects.
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Figure 9. Time record of unstable roll and surge near the t̀ip’ of the
fundamental resonance region (a = 1:6, h = 1:0).

higher values of h. Although the minimal h required at the ­ rst and the second res-
onance does not seem to change noticeably, the third and the fourth tend to expand
towards lower h values. The fourth goes almost out of the considered range of a
when the forcing becomes about half the magnitude of the real. At a critical f , a
surf-riding domain appears around the upper-right corner of the (a; h) window. A
rearrangement of the `capsize’ domain is also taking place. Most remarkably, new
smaller `spikes’ clustering from the surf-riding boundary come into existence (­ g-
ure 7). This mechanism is yet to be understood. A re-plot of ­ gure 6 on the basis of
Fr, rather than a, is shown in ­ gure 8.

In ­ gures 3{6 we also show the transition lines for the lower time of 50 s. It is
apparent that the e¬ect of the surge coupling is very profound, especially near the
encounter frequencies where surf-riding makes its appearance. At a º 6, for example,
the required h has come down to realistic levels.

Some characteristic time-records are presented in ­ gures 9 and 10 (created on the
basis of full surge wave forcing). Figure 9 shows the parametric build up of roll near
the tip of the fundamental, while ­ gure 10 shows the behaviour near the tip of the
immediately higher resonance region. The asymmetry of surge is not present yet as
the nominal speed is still low. More interesting, however, is the case of ­ gure 11,
which corresponds to a higher value of a. Here, the asymmetry, as well as its e¬ect
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Figure 10. a = 4:0, h = 1:08.

on roll, have become prevalent. Finally, ­ gure 12 shows the behaviour near the tip
of the very narrow resonance region immediately next to the surf-riding boundary.

Reduction of roll damping did not change the layout of the transition lines (­ g-
ure 13). More interesting results were obtained, however, when the natural frequency
was lowered in a way that the principal resonance also became viable (­ gure 14). The
region due to the principal resonance becomes very wide at high values of h. Most
notably, a capsize region adjacent to the surf-riding boundary exists which extends
to relatively low values of h.

5. Concluding remarks

Further systematic studies will be required in order to assess fully the importance of
surge’s nonlinearity for capsize. What has been clear so far, however, is that undue
disregard of the surge motion leads to serious underestimation of a ship’s stability
margin. In terms of further development, we should look into the e¬ect of realistic
nonlinear (GZ)-curves so that the results obtained can ­ nd their way into ship design
or operational procedures.

There is no doubt that approaching the problem in a transient sense, i.e. capsize
within a given amount of time (which has to be linked rationally with the ship
dimensions and speed), is much more relevant to the actual wave environment than
the traditional examination of asymptotic stability of steady states (incidentally, it
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Figure 11. The build up of roll and surge for a combination of a and h where strong
asymmetry appears in the surge’ s record (a = 7:0, h = 1:13).

is also much easier). Certain concepts should be given more thinking, however, for
example, the roll magni­ cation that must be allowed (this will determine the height,
in terms of h, of the tips of the transition lines). A solution to this problem may come
from the consideration of a fully coupled system, since the initial roll disturbances will
be provided through the couplings with the lateral motions. It boils down to the fact
that there should be no need for the initial conditions to be arti­ cially determined
in advance. We note a recently developed ­ ve-degree mathematical model (without
surge) for the study of parametric instability (Hamamoto & Munif 1998), which
appears to be supplementary to our numerical model.

Appendix A.

In order to obtain an accurate `least-squares’ ­ t of the damping curve, the lower and
the upper bound of the region where asymmetric surging is realized must be de­ ned
in a rational way. It seems logical to select as the lower bound that speed where
surf-riding from certain initial conditions begins, because thereafter the asymmetry
becomes very pronounced. The upper bound should be represented by the speed at
which the global bifurcation (homoclinic connection) takes place. This choice cannot
be disputed because no periodic response exists after this.
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Figure 12. At the t̀ip’ of the very narrow resonance region adjacent to
the surf-riding boundary (a = 7:5, h = 1:17).

The analytical determination of the lower bound is straightforward. The critical
propeller rate is found on the basis of the following relationship:

(T (c; n) ¡ R(c))=f = 1;

which, after substitution and some rearrangement, leads to the following equation
in n:

½ 0n2 + ½ 1cn + [ ¡ r1c + ( ½ 2 ¡ r2)c2 ¡ r3c3 ¡ f ] = 0:

For the acceptable solution, say n1, we can determine further the corresponding
still-water speed u1 by equating thrust with resistance and solving for u:

r3u3
1 + (r2 ¡ ½ 2)u2

1 + (r1 ¡ ½ 1n1)u1 ¡ ½ 0n2 = 0:

For an easier alternative, we may use the Japanese recommendation (IMO 1991)
that surf-riding begins to happen at V = 1:8

p
L, where V is the speed in knots

(this is based on 1/10 wave steepness). The corresponding nominal Froude number
is 0.296, so a 0.3 Froude number is a realistic lower bound.

Unfortunately, an analytical method for the derivation of the upper speed bound,
say u2, is not known. The condition that needs to be ful­ lled is that the unstable
­ xed point lies on the steady periodic orbit. However, due to the strong ellipticity
of the orbit in that regime and the strength of damping, the analytical solution
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Figure 14. The transition lines for halved natural frequency. The principal resonance becomes
possible. Most remarkably, a disconnected capsize region at realistic h values appears adjacent
to the surf-riding boundary.
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cannot be obtained. Heuristically (through comparison with experimental results),
Kan (1990) proposed that for a surge equation with linearized damping in the form

d2x

dt2
+ ­

dx

dt
+ sin x = ¬

the critical ¬ is given by ¬ = ¡ (4=º )= tanh ­ .
If we de­ ne ui = c=mi, then c=m1 < _x + c < c=m2, which further leads to

1 ¡ m1

m1

c < _x <
1 ¡ m2

m2

c:

By carrying out the least-squares procedure on the basis of the two endpoints only,
equation (3.8) will yield the following value of ® :

® =
» 3A1 + » 4cA2 + » 5c2A3

» 4c
with » i =

1 ¡ m1

m1

i

+
1 ¡ m2

m2

i

; i = 3; 4; 5:
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